Think Bigger. Aim Higher. Go Further.

Tag: blockchain

Behind Every Fraud Is A Mountain of Truth

fear uncertainty and doubt
Image by Gerd Altmann from Pixabay

“A lie gets halfway around the world before the truth has a chance to get its pants on” (uncredited). Similarly, such criminal leverage appears in other forms. For example, one guy with a shoe bomb is responsible for 100 million people removing their shoes every time they get on an airplane – 20 years later. Law enforcement in burdened with being right millions of times whereas the attacker need only be right once. We know from experience that the vast majority of people are truthful and honest. Despite the cost, breadth, loss of immeasurable civil liberties we are still unable to untangle the fraud from the fiction. We need to solve this problem as if our lives depend on it. Behind Every Fraud Is A Mountain of Truth that needs to be curated.

What if the leverage could be reversed so that the attacker must be right a thousand times while the target only needs to be right once?

TIP

The Value Game

One of the features of The Innovation BankTM is the application of game mechanics. The Value GameTM begins when a person makes a claim about the physical state of the world. It could be anything from claims of education and experience on their CV to reporting a toxic spill. Those claims are entered on a blockchain, timestamped, and rendered immutable. The player must then find another player to validate their claim. In effect stating “I validate that this claim is true”. The claimant and the validator are then permanently linked on the blockchain as a “node and two branches”. This claim is then combined with all of the other claims and validations in the community. Each participant is issued a digital token that can be converted to cash. That’s all there is to it, problem fixed!

Here’s how this simple game plays out.

Super Villain Max Mallory decides that he wants to gain access to a nuclear reactor in order to perform nefarious deeds. His problem is that he has no previous experience or education in nuclear engineering. Using The Innovation Bank, Mallory makes a claim that he is a nuclear engineer. He quickly encounters difficulty finding another engineer to validate his claim. Mallory pays his sidekick Carl to validate the claim. For completing the pairing, both receive a token that they can sell for a bit of hard cash. So far so good!!!

Mallory then tries to get inside the reactor gate and discovers that he is denied. Mallory’s transaction record does not follow the typical chronological sequence compared to any other nuclear engineer. Mallory goes to Wikipedia and looks up “Nuclear Engineer” to fill in the gaps. This does not work either — a blockchain cannot go backwards in time. Max needs to graduate high school before going to college. Mallory would not be able to assert the proper sequence events – even if he had a checklist. The Innovation Bank is left to register an unvalidated claim (a fancy term for a Lie) against Mallory. Likewise, a “dead head claim” (a fancy term for incompetence) remains for Carl.

If either wants to interface with the Innovation Bank at any time in the future to get a real job, apply for a loan, or comment on social media, they would experience increasing difficulty in finding validators. Their only other option would be to start over with a new profile starting at t=0.

No Incentive to Commit Fraud

In the long run, the successful attacker would need to be an accomplished professional nuclear engineer with a long transaction record validated by many colleagues, mentors, publications, and institutions in a specific sequence and over a long period of recorded time. The reward from the attack would need to far exceed the attacker’s transactional loss since they will most certainly be identified, caught, and prosecuted. But most likely, they will be thwarted at an earlier juncture with a unvalidated claim related to a less critical offense.

In general, there is no incentive to cheat. There is no incentive for aiding and abetting a cheat. There are retributions far into the future for claimants and validators who are haphazard with their facts and associations. The cost of cheating far exceeds the benefit of most illicit activity. As such, no punitive costs are incurred for routine operations of the power plant.

The Truth Has Value:

As the Value Game plays out over millions of claims and validations across the entire value network of Engineering and Science professionals, (and beyond) the probability of encountering fraud or incompetence would become exceedingly small — approaching zero — especially at the higher order claims.

Meanwhile, the aggregate database of STEM professionals interacting truthfully and dynamically is training the algorithm to identify to recognize outlier behaviors. As more truth is is stored in the aggregate database becomes, the more valuable it becomes for separating fact from fiction thereby increasing the value of the digital tokens. The higher the tokens are valued, the more secure the network becomes.

Now, the truth can travel halfway around the world before the lie has a chance to put its pants on.

TIP

It’s all about efficiency

The Innovation Bank is far more efficient than trying to unravel anonymous and spectacular rumors tossed out on the Internet. It is more efficient that having to validate the equal and opposite. Everything is pre-validated. Prohibitive punitive costs and controls are minimized. This “judicial system” is auto-funding and self-correcting. The process of curating claims and validations creates the social fabric upon which each and every one of us ultimately relies. Every participant is incentivized to collaborate as a means of gaining “stake” (i.e., equity) in the system. Meanwhile, there is no incentive to exploit or corrupt the system. The forensics are performed prior to the failure.

The Innovation Bank Project Overview

The Innovation Bank applies to All Branches of the STEM professions

Image by Gerd Altmann from Pixabay

The Innovation Bank is an autonomous network platform applicable to all branches of technical services enterprise. The platform is governed by game theory, actuarial math, and blockchain technology. The purpose is to capitalizing the STEM professions.

The Innovation Bank Project Overview

The objective is to reward individual practitioners to establish physical facts in collaboration with other practitioners. Knowledge, innovation, and wisdom may be discerned from these interactions. Where such metrics exist, intangible “in-situ” knowledge assets may then be capitalized in a manner analogous to how tangible assets are capitalized in the existing economic system.

Past research has demonstrated individual components of the Innovation Bank within various for-profit enterprise settings. This current effort is unique in its attempt to integrate these components in an autonomous public network.

Several factors need to be taken into consideration:

Engineering is an essential industry – it is essential that the Innovation Bank is complementary rather than disruptive to existing institutions and operations.

All STEM professionals and practitioners are unified and enabled for cross-discipline interaction.

Practitioners are economically compensated within the platform for their contributions to the Innovation Bank. Compensation is proportional to the value of the contribution.

Practitioners own, control and hold title to their identification, and thus, their specific transaction records.

Specific Outcomes:

The initial funding for The Innovation Bank will result in the production of a minimum viable product comprised of an operational native blockchain with decentralized governance, algorithmic token allocation, and database auditing system (block explorer). These outcomes will be suitable for research, analysis, development and future growth within the professional and academic STEM communities. This test bed will allow us to develop means, methods, and metrics for advancing the above considerations.

Intellectual Merit:

The purpose of the Innovation bank is to unify the STEM professionals in society at large. Typically, STEM professionals are segmented by institutions with mismatched ontologies, competitive restraints, or regulatory limitations. While such hierarchical arrangements were well-serving in earlier times, new tools exist allowing network platforms to efficiently deliver value at speed, and at scale.

The core activity of the Innovation Bank is to develop worthy claims such that a qualified validator would be willing to be permanently and immutably associated with the claimant. This union forms a node with two branches for which each would be compensated in proportion to their total stake in the system. A network graph is thus formed from the interconnectivity of aggregate nodes and branches.

The dominant game strategy for each individual would be to allocate knowledge resources to where they are needed most rather than where profits are most assured. Financial value is derived from the dynamic metadata embedded in the aggregate network yielding business intelligence which would command a premium over static non-validated data.

Broader Impacts:

Economic growth is contingent on technological change – this is the exclusive domain of STEM professionals and practitioners. There is currently no reliable way to directly measure the impact of technological change on economic growth. Pricing and allocation are often irrational. Engineers, scientists, technologists, and mathematicians, serve to remove risk from complex systems ranging from consumer products to public infrastructure and the natural environment.

The Implications of the Innovation Bank includes the reduction of systemic risks and improved allocation of natural and intellectual resources. In essence, The Innovation Bank will gradually replace Consumption Capitalism with “Preservation Capitalism”. The introduction of a new risk-backed asset class would amplify the missions of existing institutions such as universities, corporations, finance, insurance, and government.

Given a game that everyone can potentially win, universal engagement in STEM education and STEM applications would become a dominant social policy strategy. More information can be found at The Ingenesist Project. Please contact us for more information regarding The Innovation Bank Project Overview or please read the the following paper:

The Innovation Bank; Blockchain Technology and the Decentralization of Engineering Professions

Four Reasons Why Engineers and Scientists Need Their Own Blockchain

Image by Pete 😀 from Pixabay

Many blockchains exist for many reasons, but none are built for the purpose of discerning physical fact from digital fiction. Where other industries use blockchain to correct their flaws, a blockchain of engineers and scientists can amplify their superpowers. Our ability to leverage truth may be the most powerful tool available to shift political priorities toward resolving our most pressing Global challenges.

For almost a decade, we have been writing about how four important aspects of blockchain technology could create thousands of times more value if applied to the engineering and scientific professions rather than the financial industry. We have also been amazed by the early ambivalence, reluctance, and often visceral resistance among some professional engineering societies, educational institutions, and engineering enterprise leaders, toward this technology.

Engineers and scientists need to reorganize ourselves fast if we are to have any expectation of pulling out of our flaming planetary tailspin of social, monetary, and ecological unrest.

The Thing That Happened.

Blockchain blew onto the scene with the Bitcoin white paper published in 2008. This technology was coincident with the 2008 financial crisis which had exposed near-fatal structural vulnerabilities in our financial system — going so far as to suggest a new form of currency could be developed. Blockchain introduced the idea of immutability to the financial system where laws had failed, thus code as law became the mantra.

An essential part of this arrangement is that there must be no overarching organization that can act against the consensus of the entire community and alter any transaction after the fact. This is broadly called “decentralization”. This puts many financial transactions at odds with governments who enforce laws (i.e., law is law). That struggle continues.

1. Immutability is our superpower.

Unlike the financial industries, engineers and scientist are abundantly familiar with immutability. You can’t return the lumber to the forest. An airplane can’t be un-crashed. You can’t un-pour concrete. In fact, all scientific processes are irreversible – that is what entropy is all about. In effect, blockchain would be far better suited to represent the immutability of the underlying asset rather than the flimsy paper that represents said asset. This makes more sense.

2. Engineers and Scientists are Already Decentralized.

Earlier, I complained about about resistance by the engineering institutions. What if this flaw is actually a feature? The experience taught us that there is no singular engineering or scientific authority that can sufficiently control or enforce its will on any of the others. Rather, we found engineers and scientists to be sequestered behind a multitude of organizational silos such as corporations, professional societies, ontologies, jurisdiction, national boundaries, academic titles, etc. Even if they wanted to change, they could not find each other to do so. It is no wonder that intellectual capital is called “Intangible” on a corporate balance sheet. In effect, the engineering and scientific professions are already decentralized. All we need to do is measure ourselves into a “tangible” existence.

3. Widespread Consensus Already Exists.

There is likely no greater consensus in human civilization than the laws of Nature. Every Noun on Earth is subject to these laws without exception. The scientific method, considered the greatest innovation in human history, provides us with a means to update, modify, correct, and replace old consensus with renewed consensus. Everything else can be expressed as the probability that a consensus exists. The scientific method is able to defend against failures in a manner not unlike the Byzantine General’s problem upon which much cryptography is based.

4. A Stable and Convertible Token

Money represents productivity as measured by Gross Domestic Product. Dollars represent American productivity, Yen represent Japanese productivity, etc. Yet nearly 80% of all increases in GDP can be attributed to technological change. This is the domain of engineers and scientists. Therefore, a token representing engineering and scientific productivity also directly represents GDP. In other words, we can print money.

Here’s the Good News

Blockchain technology was invented by engineers as a direct analogy of the engineering process – not finance. This is actually very good news because nobody controls a monopoly on intellectual capital which must be fought, beaten, and dismantled in order for engineers and scientists to reorganize. Engineers and scientists can build their own blockchain that represents their work-product and govern the presentation of physical fact over digital fiction. Engineers can exist with out Blockchain but blockchain can’t exist without engineers. This is a game we can easily win.

A Blockchain Of Engineers and Scientists

Financial products are fictitious representations of real things and therefore easily manipulated into many forms while the asset that they represent remains physically unchanged (suitably called “hypothecation”). There exists a powerful technology that is abundant and cheap and that can directly express physical fact as a monetary unit rather than financial fiction.

If we work together, global engineers and scientists can simply walk onto the economic landscape unchallenged to begin altering the development priorities for the World. No kidding. Again, there is nothing standing in our way, except our own unwillingness to change. This may be the most important opportunities that has ever been presented to the Sciences.

Please, let’s not squander it.

Please read this important paper:

The Innovation Bank and the Decentralization of The Engineering and Scientific Professions

Blockchain Is Better for Engineering. Global Engineers and Scientists must adopt Blockchain Technology to directly enforce physical fact over financial fiction.

25

You Can’t Buy Global Solutions with Local Money

Courtesy of Wikimedia Foundation

epSos.de, CC BY 2.0, via Wikimedia Commons

We are all familiar with the sentiment “if only there were more money, all our problems would be solved”. That is only about 20% true. The Innovation Bank is a system being built to solve the other 80% of our problems.

Money as we know it is a generalized accounting of all the things that humans produce. For example, Gross Domestic Product measures tangible value, it does not measure intangible value. Yet 80% of technological change can be attributed to intangible value creation (Solow, R). These include social capital, creative capital, and intellectual capital.

We need to form a new type of money that measures the other 80% of the economy — the invisible stuff. This is where the big solutions are. Solving Global Problems requires global solutions that must all use the same units of account. VC and the USPTO try to do this, but only a tiny percentage of intangible value ever gets converted to tangible assets in this way. We need something better, comprehensive, and scalable.

Data as Currency

Data is emerging as a new form of currency which can be used to visualize, predict, and assess the value of intangible assets. The problem is that bad news is thousands of times more “tangible” than good news. A single attacker on Social Media can sink a business because nobody counts the 1000 perfectly satisfactory prior transactions. As David Mustaine elegantly croons “Peace sells but who’s buying?” Another version of Stanley McChrystal’s “The good guys need to be right 100% of the time, the bad guys only need to be right once.” This can put a horrible skew on things and AI can’t fix it.

The “good intangible” data needs to be proactively curated as part of one’s everyday professional activity record. There needs to be a simple interface where a person can produce a claim, and that claim can be verified by a recipient or observer. Then we can creating a data node with two at least two branches that can be aggregated with everyone else’s transactions. The resulting dataset, while enormous, would yield a tangible measure of social, creative, and intellectual capital.

Most importantly, this dataset needs to be populated and in direct control by the persons whose transaction record is being curated. It is important that this system is decentralized since the data will be extremely valuable. Someone else will gladly do it for us with every manner of IoT sensor, AI bot, or some old-school regulatory hurdle.

The Innovation Bank

The Innovation Bank uses game theory and blockchain technology for the purpose of curating valuable, truthful, productive, and validated “good data” created by people and their productive interactions with each other. There is no entry for bad news. The Innovation Bank rewards the users with a cryptographic token that memorializing their transactions. The tokens may then be exchanged for access to the metadata curated by others on the platform. This technique for delivering the right asset to the right place at the right time thereby releasing the other 80% of economic value produced by society.

In short, The Innovation Bank is auto-funded by creating a form of money that measures the remaining 80% of economic output. The Innovation Bank incentivizes high impact solutions precisely when and where they are needed most. There is a market for that, all we need to do is measure it into existence.

The WIKiD Tools Algorithm

The WIKiD Tool algorithm provides a mathematical framework for analyzing dynamic data related to social interactions in a network and memorialized on a Blockchain. This example uses an analogy to the position / velocity / acceleration equations that some people may remember from their school days.

These types of relationships are important for measuring things like innovation. Ask any VC for a definition of Innovation and they’ll probably say “I’ll know it when I see it” or “it’s a good idea with an economic outcome”. Neither of these things are measurable until long after the innovation occurs which is not practical. However, if we could measure something that is closely related (correlates) with innovation, perhaps we could use that to measure the thing we can’t see.

A similar thing happens on Wall street – how do you measure consumer confidence? Financial analysts noticed that the price of some commodities track closely with consumer confidence so they use that as a proxy for the thing they cannot measure directly. This is called a derivative – something whose value is derived from the value of something else. Suppose we use the same idea to measure things like Wisdom, Innovation, Knowledge, Information, and Data (WIKiD)?

As engineers interact with each other to form transaction records, the blockchain records the chronological order of every event, so we can now correlate all events with respect to time.  The connections that are made may be analyzed for both quantity and quality (magnitude and direction). We can now use common mathematical tools from finance and physics.

We have established that the blockchain records the time function for all events to an immutable ledger.  In order to represent vector magnitude we’ll follow a well known analogy to the displacement-velocity-acceleration formulas from physics and associated Calculus.

WIKiD stands for:

(W) = Wisdom
(I) = Innovation
(K) = Knowledge
(i) = information
(D) = Data

Data: In general, we can define data as points placed on such a coordinate system. Each point defines a position in space and the time where an event is recorded. The distance between data points can be called “displacement”, because of the relative distance between the points. In the simplest sense, we can see that Data (D1) and Displacement (D2) share an analogy.

Information: When you draw a line connecting two points, or you draw a line approximating a cluster of points, the slope of that line on a graph provided information about the phenomenon under observation. Is it getting larger slowly? Is it getting smaller rapidly? In essence, the slope of the line represents the rate of change in displacement with respect to time and gives the observation its “velocity”.

This may be represented by the relationship simply stated as:

i = dD/dt

Information is proportional to the rate of change in the data with respect to time

It should be clear that we are defining ‘information’ as a derivative of ‘data’.  a derivative in physics is the same as a derivative in finance, that is “something whose value is derived from the value of something else” That said, we now proceed down the latter of derivatives.

Knowledge: The analogy between velocity and knowledge is intuitive. Knowledge is a phenomenon that may be modeled as the derivative of ‘information’. Strictly speaking, the value of knowledge is derived from the value of the information from which knowledge was created. It is intuitive that one accumulates knowledge over a long period of absorbing information and integral data. Education is the process of absorbing information from a printed page or screen, and combining that with other previously accumulated information to form knowledge.

Hence, the following relationship holds and is simply stated as follows:

K = di/dt =d2D1/dt2

Knowledge is proportional to the rate of change of information with respect to time

Innovation: The analogy between acceleration and innovation is also intuitive but a little more difficult to put to words  (that is why we use equations). Consider an child who is knowledgeable in riding a bicycle on pavement. Suppose that the child, for the first time, encounters sand on the pavement while also executing a sharp turn. During the ensuing deceleration, the child experiences a very high increase in knowledge about their environment within an extremely short period of time. In any case, the child is forced to innovate a solution. Likewise, the motocross racer is constantly innovating to adapt to the conditions of the track.  You can read a book about riding bicycles, but none can adequately describe the moment when the child must create the experience anew.

For the fact of innovation, we provide the following relationship simply stated as follows:

I = dk/dt = d2i/dt2 =d3D/dt3

Innovation is proportional to the rate of change of knowledge with respect to time

Innovation Example: One of the gross errors that we make in business is due to the inability to differentiate an economic event from it’s constituent physical parts.  The classic example is innovation; Venture Capitalists often describe innovation as a new idea that has an economic outcome.  This is problematic because innovation is defined with one equation having two unknowns.  This is mathematically impossible to solve, except by laborious and expensive iterations.

The rational (mathematical) approach would be to test and observe high rates of change of knowledge in a community and use that as a proxy to identify the presence of innovation (as defined above). After that, the community may be tested for economic outcomes.  Unfortunately, I=dk/dt is not normally possible to observe in a hierarchical business structure.  However, when formatted and validated correctly, and applied to a network organizational structure, then I=dk/dt can be represented graphically and accurately identified even by a child.

Wisdom: When we think of wisdom, our minds conjure the image of an elderly person with a lifetime of experiences behind them. Somehow, our elders seem to be able to predict the outcome of a series of actions before those actions take place.   This is why we seek wisdom to lead our organizations and institutions.

Consider the manager of a factory floor who has 30 years experience. During those 30 years, they have seen many things succeed and many things fail. In fact, their experience represent a statistically significant sample of representative events that they have experienced in the past.   The wise manager is able to process new information with old information to predict the probability that the new idea will yield the desired results. The propensity for wisdom may be modeled as a time function in a similar manner.

W = dI/dt = dK2/dt2 = d3i/dt3 = d4D/dt4  

 Wisdom is proportional to the rate of change of innovation with respect to time

In general we could say that Wisdom is the second derivative of Knowledge and the fourth derivative of Data. Similarly, Innovation is the first derivative of Knowledge and the second derivative of information, and so on.  In order to identify innovation, we would measure high rates of change of knowledge.  Wisdom would be proportional to high rates of innovation, etc.  The utility of these functions should be apparent.

Conclusion

The WIKiD tools algorithm provides a set of relationships for what are now considered intangible assets that are integrated by a time function.  The Blockchain provides the master schedule for the time function to be recorded, leaving us with a somewhat routine task of identifying rates of change in observable events.  

TVG: The Value Game

A New Class of Business Methods

The Value Game (TVG) is a new class of business methods where value is extracted from an asset, not by consuming the asset, rather, by preserving the asset.  The process of preservation and maintenance is the substrate for the creation of social, creative, and intellectual capital in a community.  TVG is a difficult thing to sustain in a legacy economic model, but may be quite efficient and profitable in the modern networked organizational structures enabled by decentralized adjudication, a decentralized ledger. and simple game mechanics.

To illustrate, we cite examples from on-line games collectively referred to a Fantasy Sports.   Fantasy baseball for example is a game played by adapting real life game statistics to create hypothetical game scenarios using some randomization system such as a set of dice.  Over time these games have become more sophisticated, computerized, and have spread to other sports, and now they are on-line.  Today, fantasy sports are estimated to be a 2 billion dollar industry involving over 56 million people.

What if a “fantasy play” could be replicated given a set of validated statistics, in real life? How would the real world game actually turn out?  This is not an uncommon thought. Many HR directors, corporate recruiters, and entrepreneurs dwell on this topic extensively: “How could we identify social capital, creative capital, and intellectual capital of people, given a set of market measures, and allocate them into a self-optimizing game to yield production and profit?”.

Building A Value Game

  • The Value Game starts by identifying any asset that a group of people may share.
  • The next step is to find 3 or more diverse communities that have a vested interest in preserving the asset rather than consuming the asset.
  • Each player acting in their own best interest will seek to play their expertise among the others as best as possible.
  • Any threats to the shared asset will be neutralized by the majority of players in a network.
  • The transactions between the diverse communities of people will “mine” social capital, creative capital, and intellectual capital into existence generating tokens in the process.
  • Individual transaction records will be memorialized on a blockchain under the control of the individual.
  • Validated transaction records may be transferable to other Value Games, blockchains, or tokens.

Example:  A condominium is an arrangement of several individual owners (of living units) who all have individual talents.  It is in the best interest of each that the building is well maintained, but none are necessarily qualified to manage and maintain a complex structure.  Another community of nearby vendors such as restaurants, accountants, engineers, physicians, and employers have in their best interest that the condominium is maintained because the value of the units impacts the value of commerce – and the productivity of the residents is the primary source of revenue for vendors.  It is also in the best interest of neighboring buildings, the school district, and the city tax pool, civil servants, etc., that the shared asset is maintained to optimize it’s value.  Each player is aware of the impacts in the network based on the analysis of similar networks.

While malicious actors may be a symptom of illness, by actual attack vector is apathy and neglect. Gravity, weather, and deferred maintenance are constantly trying to reduce that condominium structure to lower state of value.  Maintaining an asset creates value equal to the entropy of the system plus asset appreciation due to the creation of social, creative, and intellectual capital.

The Value Game would form a cryptographic token that may be exchanged among the parties in whose best interest it is to preserve an asset rather than to consume the asset.  This is done in many forms today – a restaurant may offer a coupon to residents for a lunch special.  A physician may locate close and rely on referral instead of advertising.  An trades person saving time and travel expenses may pass that on to local community.  When a drug dealer comes to town, they are quickly identified and excised from the community by the community.

Almost any shared asset may be used to form a value game. 

  • A residential or commercial building
  • A Corporation
  • A car, airplane, or other transportation asset
  • Land for farming, mining, or urban forest
  • Water, food, and energy
  • Engineers, Doctors, Civil Servants
  • Educators, mentors, apprentices
  • Laborers, Maintainers, cleaners
  • Planet Earth

New Value Entrepreneur 

The objective of the New Value Entrepreneur will be to organize three or more communities to interact around a shared asset where the interactions among these communities act to preserve the asset rather than consume the asset.  As people interact with each other, they teach, learn, and iterate with each other.  This activity manufactures social capital, creative capital, and intellectual capital memorialized by transaction records represented by the community token.

In general, once a value game is started, it will improve itself.   All players will eventually find and play roles in Value Games that correspond most closely to their natural interest and passions and therefore maximize their personal value.

The Return of The Ingenesist Project

After about 4 years of not posting to this site, I have decided to return to the original ideas that resulted in so much innovation in this space. For a quick review, the term “Ingenesist” is derived from the Latin word for Engineer – A Maker of Useful Things.

The TIP archives found here include almost 600 blog posts (site map) approaching 1/2 million words. You’ll find the original thesis for the international mobility of engineers under NAFTA between US, Canada, and Mexico. That project involved 6 universities, the California Board of Professional Engineers, The National Council of Examiners for Engineers and Surveyors, and the National Society of Professional Engineers – and with the cooperation and support of CETYS University, the Baja California State Government, and over 250 Engineers from Mexico who presented the US Engineering Board exams.

That work was further developed at the Boeing Commercial Aircraft Company and published at the Boeing Technical Excellence series of conferences by their Technical Fellowship. From this effort, TIP developed The Innovation Bank that would match most worthy knowledge surplus to most worthy knowledge deficit to form an internal market (network) for knowledge transfer. That work is memorialized in an old 2007 Patent Application

Later, TIP co-founded Social Flights – a ride sharing service for private jets. The innovation was our ability to predict most likely passengers and match them with most likely seats available on private aircraft. Supply and demand were both dynamic. Keep in mind that this was before Uber and we were acting within a highly regulated industry. Ultimately Social Flights was acquired.

TIP developed three key innovations:

The Value Game: An economic game where multiple self-interested agents must share a common asset. Their motivation and incentive would be to preserve the asset rather than consume the asset. This was supposed to simulate a sustainable economy such as what is desperately needed for our planet. The Value Game originated at Boeing and was tested with Social Flights and successfully deployed in several remodeling projects for condominium associations (shares asset communities)

The WIKiD Tools Algorithm. WIKiD Tools creates a mathematical relationship between (viewed backwards) Data, information, Knowledge, Innovation, and Wisdom. WIKiD tools is useful when you can’t measure something like innovation directly, you could measure a derivative such as the “rate of change in knowledge” as a proxy. In this way,the richness of Wisdom, Information, Knowledge, information, and Data can be more predictable.

Curiosumé is a combination of the words Curate and Resumé. The idea behind curiosumé is to convert the CV or Resumé to a form of code that can be overlaid on other information databases such as Wikipedia, Amazon ontology, even the Library of Congress. This allows us to measure intangible assets as they act in a community.

Then Came Blockchain:

We stopped publishing to The Ingenesist Project in 2016 in order to apply TIP innovations to emerging technologies such as Social Media, Blockchain, AI, etc. It appeared that the decentralization of the engineering profession would be an important step in achieving the original goals of sustainable global enterprise. During this time, I also started a small engineering consulting firm called CoEngineers, PLLC that served a traditional local market bringing engineering services to a retail clientele. CoEngineers, PLLC helped pay the bills while also serving as a sandbox for testing and developing TIP Innovations. Our first entry into blockchain was the creation of a token called Quant on the BitShares Blockchain.

SIBOS, NSPE Task Force, and National Association of Insurance Commisioners: Collectively each of these organizations represent the Banking Industry, The Insurance Industry, and the Engineering Profession. TIP published 3 whitepapers that became the basis for the next iteration. It was noted that each of these industries trade an invisible currency called Risk. It was found that TIP methodologies were better described by actuarial math (probabilities) rather than interest laden monetary metrics. This 3-way association became the genesis of the Insurance / Engineering Blockchain Consortium. This was later changed to the Integrated Engineering Blockchain Consortium or IEBC.

IEBC: Over the course of several years, IEBC was the umbrella organization for 150 engineers, scientists, and business persons who advanced the idea of a decentralized engineering network to mesh with the banking and insurance environments. IEBC published numerous seminal documents and spoke at dozens of industry conferences. The two main achievements were to publish a whitepaper with detailed specifications for a blockchain strategy that would accommodate all prior TIP innovations. The IEBC team built a prototype blockchain by cloning an existing successful chain and modifying it to suit MVP demonstration. IEBC ultimately ramped down for lack of funding. But everything we learned is now open for iteration.

Where to re-Start? TIP has always been a place where ideas are formed and implemented either by ourselves or by others. Many TIP Ideas survive to this day in the many hundreds of engineers and scientists who have participated in the conversations, the start-ups, the publications, lectures, and webinars over the last 15-20 years. We can see many past TIP contributors advancing in their careers, businesses, and leadership roles.

There is something that binds people to this network – it has to do with the underlying belief that Makers Of Useful Things are the cause, not the effect, of sound and sustainable economic activity. The flaw of market capitalism has the world operating in a mirror image of the economy that was supposed to happen. The solution is more about perception than it is about revolution.

Blockchain and NAFTA May Have a Lot in Common

nafta-crossingAnyone who was around in the early 1990’s may remember the mantra of modern globalization was that centralized markets were bad and decentralized markets were good. Fast forward to 2016 and blockchain technology: centralized ledgers are bad decentralized ledgers are good.  Does this sound familiar?  Blockchain and NAFTA may have a lot in common. The good news is that perhaps this new world is not quite as uncharted as it now appears.

Coinciding with the end of the Cold War, we can now look back at NAFTA as the Big Bang of modern globalization.  The supporting calculus is credited largely to the ‘theory’ of Comparative Advantage;  an economic thesis referring to the ability of any given economic actor to produce goods and services at a lower opportunity cost than other economic actors. The idea first appeared in 1817 in a book by English economist David Ricardo, “Principles of Political Economy and Taxation”  David Recardo’s ideas still serve as the logical basis of international trade. The efficiency of this economic model were at the time, and still are, indisputable.

Further back, the 15th Century concept of Laissez-Faire is an economic system in which transactions between private parties are free from government interference.  Meanwhile, the “invisible hand” was a term first used by Adam Smith to describe the unintended social benefits of individual actions.  These ideas formed the cornerstones of modern Capitalism – the decentralization movement of a prior era.  Indeed, Capitalism solved a great many human problems while arguably ushering into existence new, and possibly more perilous problems such mass political instability, financial crises, and even climate change.  Now, the advent of bitcoin claims to solve many of these problems.  This begs the question, what new problems will be created after 25 years of blockchain technology?

More importantly, perhaps this connection to a large body of precedence (if we are clever) can guide us to a different set of outcomes than prior decentralization technologies.  This is an important and timely question given the blockchain technology, due to the Network Effect, is exponentially more powerful than the relatively linear Law of Comparative Advantage.

Lessons Learned

I was involved with developing standards for the mutual recognition of engineering professionals between US, Canada, and Mexico back in 1993-1996.  What made NAFTA different, and hence “modern”, was an inclusion of free trade in services sector.  These included financial services like banking and insurance as well as professional service providers from engineers to librarians.  Essentially NAFTA attempted to treat intangible value directly as a tangible object for international trade.  Still a problem yet to be solved.

At the time however, the mutual recognition of professional engineers was controversial and divisive. The US engineers were fearful that they would lose their high paying jobs to cheap Mexican engineers, whose salaries were about 1/10 the US engineering salary.   A “giant sucking sound” was the popular phrase coined by a billionaire presidential candidate at the time.  The fear was made very real for many people, not unlike the immigration debate that continues to rage today.

I saw something different.

In Mexico, I saw an entire nation – an entire continent – that needed everything that US engineers create. Mexico, Central America, and South America needed roads, bridges, structures, water, energy, and every manner of infrastructure upon which free markets utterly depend.  Since NAFTA also liberalized trade in financial services, that meant that economic development could be financed at low cost of capital.  In my youthful idealism, I felt that the opportunities for engineers from all countries was beyond extraordinary – to me, it was specifically the rising tide of basic infrastructure that would float all boats.  Unfortunately, this opportunity was woefully squandered.   Let me explain.

In the US, and many developed countries, the professional engineering licensure laws assure transparency, consensus, and economic incentives that rewards high integrity rather than low integrity among engineers and contractors who carry such licensure.  When the PE stamp is indelibly attached to the project plans, the asset that is described by those plans is held in suspension on the balance sheet during the design and construction phase. This span of time is when the highest monetary risks and technical risks occurs.  Insurance companies depend heavily on engineers to verify the design, materials, processes, components, chronological order and performance of all components of the systems that they insure.  Where risk can be transferred to insurance, the cost of capital can be minimized.

The problem with the NAFTA Mutual Recognition Standards for engineers was that the three negotiating bodies for the US, Canada, and Mexico failed to reach an agreement over reciprocity of the other member’s licensure model and instead defaulted to the highest common denominator which fell far short of practicality while also failing to meet the conditions of insurability, especially for Mexico.  As such, infrastructure projects could not be financed for lack of licensed engineers in the relevant NAFTA jurisdictions. This was not for lack of money because NAFTA also liberated access to financial services – but for lack of insurance. Without a tip-to-toe insurance presence, Latin American economies continue to experience difficulties in bridging the capitalization gap.  Innocent people suffer.

Many trade agreement that followed NAFTA would go on to include free trade in services, and also inherit this flaw capitalization of infrastructure for lack of Global Engineers.  Unfortunately, mutual recognition of engineers would be stopped cold at the borders for lack of insurance.   Many of the problems associated with globalization today, in my opinion, can be attributed to the failure of the NAFTA Mutual Recognition Document for Professional Engineers.  We have an opportunity to correct this flaw and it is imperative that we do so.

To centralize, decentralize, or re-centralize. 

While the economic theories of decentralization are sound, the intended outcome has been elusive.  Instead of converting from centralized serfdom to the invisible hand of freedom, we keep inventing new forms of re-centralization where one centralized system is traded for another under the auspice of decentralization!  The danger is that blockchain technology will not reach its potential of economic freedom for all, rather, it will simply become another form of mechanization that replaces people with machines.  A decentralized solution will require the integration of machines with people.  That means we need to augment human capacity not “surplus” it.

Blockchain technology replaces some – but not all – of the decisions that a human administrator makes.  It will be important to look at bureaucratic processes and accurately discern what can go to a blockchain and what must remain in human judgement.  The current markers of re-centralization include so-called permissioned ledgers to replace back office workers.  Permissioned by whom? A centralized authority? The running joke in the cryptocurrency space is that any effort to control a decentralized system quickly cancels out the advantages of having one in the first place.  Re-centralization is dangerous.

Instead, the integration of humans and blockchains should take a hybrid approach where humans serve as adjudicators to the blockchain machinery pointing smart contracts toward the intended outcome at specific points of risk transfer.  Eventually, a means to decentralize the human adjudicators will be required so that they cannot be corrupted.  One such solution is proposed by The Ingenesist Project.  It is called Curiosumé and it converts a CV to cryptography so that holders can lock contracts to a blockchain quasi-anonymously.

The consortium between engineering and insurance is a critical development in the current evolution in blockchain technology and is required to break the cycle of recentralization by expanding the insurance capacity of our financial system to a fundamental storage of value – public infrastructure.  We need to learn how to convert existing engineering and construction contracts into blockchain adjudicated smart contracts. We need to figure out how to decentralize the adjudicators in a fault tolerant system that cannot be easily corrupted, thus providing for optimal allocation of public and natural resources.  Then we need to expand the adjudication system to all other service professionals who also serve the needs of our human markets.  The resulting cryptocurrency will have intrinsic properties that people will be willing to trade. In this manner, the cost of capital will be lowest for the most proper allocation of resources required by an increasingly crowded planet.

(Adapted from; Insurance: The Highest and Best Use of Blockchain Technology, D.Robles, July 2016 National Center for Insurance Policy and Research / National Association of Insurance Commissioners Newsletter: http://www.naic.org/cipr_newsletter_archive/vol19_blockchain.pdf)

 

The Mechanics of Blockchains

rubrik-fridge The Mechaics of Blockchains

Blockchain technology is like a three-trick pony. It essentially combines three slightly clumsy computer tricks to mimic decisions that a human administrator routinely makes. The difference is that, if done correctly, the computer can perform some of these decisions with great speed, accuracy and scalability. The peril is that, if done incorrectly, the computer can propagate an incorrect outcome with the same stunning efficiency.

1: The Byzantine General’s Dilemma

A scenario first described in 1982 at SRI International models the first trick. This problem simulation refers to a hypothetical group of military generals, each commanding a portion of the Byzantine Army, who have encircled a city that they intend to conquer. They have determined that: 1. They all must attack together, or 2. They all must retreat together. Any other combination would result in annihilation.

The problem is complicated by two conditions: 1. There may be one or more traitors among the leadership, 2. The messengers carrying the votes about whether to attack or retreat are subject to being intercepted. So, for instance, a traitorous general could send a tie-breaking vote in favor of attack to those who support the attack, and a no vote to those who support a retreat, intentionally causing disunity and a rout.

See also: Can Blockchains Be Insured?  

A Byzantine Fault Tolerant system may be achieved with a simple test for unanimity. After the vote is called, each general then “votes on the vote,” verifying that their own vote was registered correctly. The second vote must be unanimous. Any other outcome would trigger a default order to retreat.

Modern examples of Byzantine Fault Tolerant Systems:

The analogy for networks is that computers are the generals and the instruction “packet” is the messenger. To secure the general is to secure the system. Similar strategies are commonplace in engineering applications from aircraft to robotics to any autonomous vehicle where computers vote, and then “vote on the vote.” The Boeing 777 and 787 use byzantine proof algorithms that convert environmental data to movements of, say, a flight control surface. Each is clearly insurable in a highly regulated industry of commercial aviation. So this is good news for blockchains.

2: Multi-Key Cryptography

While the Byzantine Fault Tolerant strategy is useful for securing the nodes in a network (the generals), multi-key cryptography is for securing the packets of information that they exchange. On a decentralized ledger, it is important that the people who are authorized to access information and the people who are authorized to send the information are secured. It is also important that the information cannot be tampered with in transit. Society now expends a great deal of energy in bureaucratic systems that perform these essential functions to prevent theft, fraud, spoofing and malicious attacks. Trick #2 allows this to be done with software.

Assume for a moment that a cryptographic key is like any typical key for opening locks. The computer can fabricate sets of keys that recognize each other. Each party to the transaction has a public key and a private key. The public key may be widely distributed because it is indiscernible by anyone without the related private key.

Suppose that Alice has a secret to share with Bob. She can put the secret in a little digital vault and seal it using her private key + Bob’s public key. She then sends the package to Bob over email. Bob can open the packet with his private key + Alice’s public key. This ensures that the sender and receiver are both authorized and that the package is secured during transit.

3: The Time Keeper

Einstein once said, the only reason for time is so that everything doesn’t happen at once. There are several ways to establish order in a set of data. The first is for everyone to synchronize their clocks relative to Greenwich, England, and embed each and every package with dates of creation, access records, revisions, dates of exchange, etc. Then we must try to manage these individual positions, revisions and copies moving through digital space and time.

The other way is to create a moving background (like in the old TV cartoons) and indelibly attach the contracts as the background passes by. To corrupt one package, you would need to hijack the whole train. The theory is that it would be prohibitively expensive, far in excess of the value of the single package, to do so.

Computer software of the blockchain performs the following routine to accomplish the effective equivalent process: Consider for a moment a long line of bank vaults. Inside each vault is the key or combination to the vault immediately to the right. There are only two rules: 1. Each key can only be used once, and 2. No two vaults can be open at the same time. Acting this out physically is a bit of a chore, but security is assured, and there is no way to go backwards to corrupt the earlier frames. The only question now is: Who is going to perform this chore for the benefit of everyone else, and why?

Finally, here is why the coin is valuable

There are several ways to push this train along. Bitcoin uses something called a proof-of-work algorithm. Rather than hiding the combinations inside each vault, a bunch of computers in a worldwide network all compete to guess the combination to the lock by solving a puzzle that is difficult to crack but easy to verify. It’s like solving a Rubik Cube; the task is hard to do, but everyone can easily see a solution – that is sufficient proof that work has been done and therefore the solved block is unique and valid, thereby establishing consensus.

Whoever solves the puzzle is awarded electronic tokens called bitcoin (with a lower case b). This is sort of like those little blue ticket that kids get at the arcade and can be exchanged for fun prizes on the way out. These bitcoins simply act as an incentive for people to run computers that solve puzzles that keep the train rolling.

Bitcoins (all crypto currencies) MUST have value, because, if they did not, their respective blockchain would stop cold.

A stalled blockchain would be the crypto-currency equivalent of bankruptcy. This may account for some amount of hype-fueled speculation surrounding the value of such digital tokens. Not surprisingly, the higher the price, the better the blockchain operates.

While all of this seems a bit confusing, keep in mind that we are describing the thought patterns of a computer, not necessarily a human.

The important thing is that we can analyze the mathematics. From an insurability standpoint, most of the essential ingredients needed to offer blockchain-related insurance products exist as follows.

1. The insurer can identify the risk exposures associated with generals, traitors, locks, vaults, trains and puzzles.

2. The insurer can calculate probability of failure by observing:

  • The degree of Byzantine fault tolerance.
  • The strength of the cryptography
  • The relative value of the coins (digital tokens)

3. The consequences of failure are readily foreseeable by traditional accounting where the physical nature of the value can be assessed, such as a legal contract.

We can therefore conclude that each of the tricks performed by this fine little pony are individually insurable. Therefore, the whole rodeo is also insurable if, and only if, full transparency is provided to all stakeholders and the contract has physical implications.

Markets are most efficient when everyone has equal access to information – the same is essential for blockchains. So much so that any effort to control decentralized networks may, in fact, render the whole blockchain uninsurable. It is fundamentally important that the insurer is vigilant toward the mechanics of the blockchain enterprise that they seek to insure, especially where attempting to apply blockchain to its own internal processes.

Adapted from: Insurance: The Highest and Best Use of Blockchain Technology, July 2016 National Center for Insurance Policy and Research/National Association of Insurance Commissioners Newsletter: http://www.naic.org/cipr_newsletter_archive/vol19_blockchain.pdf

Are Blockchains Insurable?

home-fireAre blockchains insurable?  This question was posed to us as a topic for presentation by the Center of Insurance Policy and Research, a research arm of the National Association of Insurance Commissioners (CIPR / NAIC)

The trigger appears to be that some insurance companies are being asked to insure the business operations of blockchain enterprises. This same concern would apply to legacy business operations that may choose to deploy a blockchain – basically, a shared database managed by software.  If one listens to the blockchain activists, this could basically apply to everyone in the near future.

The Ingenesist Project volunteered the following opinion to the question; Are Blockchains Insurable?  The article was published in the July 2016 CIPR Journal

Article available here

This article is comprehensive and staggering in its implications.  It begins by shaping the given landscape of finance and entrepreneurship in terms of insurability.  It follows with, in essence, a mathematical proof that arrives at a conclusion that blockchains are insurable, but business processes using blockchains may not be.   Luckily, the technology offers sufficient mathematical underpinning to calculate and adequately pool risk exposures of its components.  However, the trouble arises where digital assets can neither be treated as money nor property.  This extralegal condition may exist which would be categorically non-insurable in mainstream finance.

“Extralegal” refers to a condition in which something is neither legal nor illegal. Economist Hernando De Soto writes about how the extralegal sector in many parts of the world grossly inhibits economic growth because people are unable to secure “title” to property and businesses that they create.  They are unable to bridge the capitalization gap – that is, the ability to borrow “money” against tangible assets or future returns.

Blockchain technology appears to be languishing in the extralegal domain as courts and governments have little uniform ideas about how and where this tech fits in society.  That is, until something goes wrong like a major hack where important people lose a lot of money.  Then some patchwork of blanket legislation will likely emerge to favor those of one sector over another.  The running joke in crypto-space is that any effort to control blockchain technology would negate any benefits of having it in the first place.

There is a third option.

This article raises the possibility that the pairing of blockchain tech with professional engineers (as the decentralized adjudicators of smart contracts) would achieve a state of insurability and thus bridge the capitalization gap required for mainstream financing of blockchain enterprise.  This arrangement applies primarily to basic infrastructure and derivatives of basic infrastructure which may not actually be a bad thing at all.

Ucritcal pathOn a critical path.

The Earth is an epic case study in deferred maintenance.  There are very real and serious global problems that impact every living creature on Earth that we need to attend to immediately.  Critical path methodology is a technique familiar to all builders as a set of instructions specifying where one action must precede the next in order for subsequent actions to occur.  Millions of business plans that provide basic human needs and protect our natural resources, and that are currently unprofitable, will suddenly become hugely profitable.

These outcomes could be accomplished with the recommendations provided within.  Please read this article and forward it to others who are interested in this technology.  There is very real money to be made in the next economic paradigm that is currently at our fingertips.

Article available here

 

 

 

The Highest and Best Use for Blockchain Technology

earthshot2The hallmark of a great society is the ability to capitalize it’s needs, not it’s arbitrage opportunities.  The Highest and Best Use for Blockchain Technology must be to reduce the cost of capital by decentralizing risk, not necessarily money…yet

Blockchain technology carries a promise of great opportunity, efficiency, and fairness in business operations and governance for an entire struggling planet. If that is true, then Blockchain technology should be integrated broadly and uniformly across society and within as many existing institutions as possible. If that is true, then Blockchain development should not be the exclusive domain of a single sector, such as banking. Nor should Blockchain development reflect priorities of highest ROI from VC start-ups. Likewise, purely Decentralized Autonomous Organizations (DAOs) may carry the risk of operating in an extralegal sector without legal recourse, thereby increasing net volatility, not decreasing it.

A different track is required.

The primary objective of Blockchain technology must be to reduce the cost of capital by decentralizing risk, not necessarily money. The highest and best use for blockchain technology is therefore insurance, not necessarily banking. In doing so, blockchain innovation can then be applied broadly, evenly, and intentionally across the economy. This makes sense because when building anything complex or important, one logical piece needs to go in front of the next logical piece regardless of it’s individual ROI, because the collective ROI is the true basis of valuation. If people tried to build an airplane in the same manner we are now trying to build decentralized economics, a few may benefit, but an air transportation system, as a whole, would be tragically constrained.

We have seen this before.

Many of the issues currently propping up the narrative to the Blockchain phenomenon were also present during the time of this author’s participation in the NAFTA negotiations. Anyone who was around in the early 1990’s may remember the mantra of modern globalization was that decentralized markets were good and centralized markets were bad. The mathematics supporting the efficiency of free trade models such as the Theory of Comparative Advantage were, and still are, bullet proof. So what happened?

Unfortunately, decentralized markets were administered unevenly, disproportionately, and only partially insurable, at best. The act of trying to control a decentralized market eliminated many of the benefits of having one. Today, we face a similar peril, except we are playing with a far more powerful technology promising exponential efficiency, or exponential deficiency. Don’t let the pundits fool you. It can go either way.

The difference today is that we also have the knowledge, foresight, a technological tool kit, and profound responsibility to get it right this time.

Let’s begin.

The place to start developing blockchain technology is through a consortium of Insurance and Professional Engineering institutions for the creation of relevant infrastructure and the physical derivatives upon which everyone utterly depends. This includes renewable energy, clean air, safe water, transportation systems, health and welfare, housing, building systems, computer networks, etc. After all, bitcoins aren’t worth a whole lot when the power goes down.

Infrastructure projects, and all their beneficiary derivatives, require financial institutions that can bridge the capitalization gap between the inception of a project and revenue from the project. This period of time is rife with peril because the “money and title” precedes the delivery of the physical asset. The cost of capital is directly proportional to the risk associated with project delivery. Wherever the insurance industry is capable of pooling project risks, the cost of capital will fall precipitously. The insurance industry is therefore an imperative component to this objective. Banking is relatively simple, accounts can be cleared with a placeholder currency; a token, if you will.

Herein lie both the challenge and the opportunity facing Insurance and Engineering institutions related to Blockchain Technology:

First, as with all new technology, we need to recognize that society will reorganize itself around Blockchain Technology. We need to provide hundreds of millions of entrepreneurs and citizens the support systems with which to do so.

Second, if each component part of the blockchain system is insurable, so too should the entire system. We need to insure and reinsure each individual components of a blockchain business system(s) in order to lower its cost of capital.

Finally, once insurable, each component part of the new economy will have the same cost of capital as any other part. The relative value of an investment will therefore be ordered in time — the most important and valuable piece is the one that goes next in the critical path. This is how things get built.

Taken together, Insurance and Engineering are sufficiently disintermediated from short-term objectives and are ideally suited for the long game. Together, they can bridge the capitalization gap upon which everyone can then cross. They provide outcomes in the physical world that are essential to everyone. Together, they can deliver the projects that are most important — the ones that come next as we navigate our critical path into the future.

Identity Verification On Blockchain

This Panel was formed at the Future of Money and Technology Summit in San Francisco on December 5, 2015 to unpack the issue of Identity verification on Blockchain.  One of the most powerful components of blockchain technology is the equal ability to disintermediate a person’s identity from their data, as to associate identity with a dataset. During this panel of experts, the lines were clearly formed around the notion of who “controls” identity and whether anonymity is considered as valid a form of identity in a transaction as full disclosure.

Dan Robles, PE – The Ingenesist Project (moderator),
Tim Swanson – R3
Paige Peterson – MaidSafe,
David Birch – Consult Hyperion,
Joyce Kim – Stellar.org

Background:

There can be no blockchain banking without verification of identity on blockchain.  While this may seem like an invasive requirement, it may also be considered a liberating requirement.  Billions of people are “unbanked” and cannot hold assets because there is no way to identify who owns what.  Where blockchain makes banking available to more people, so too must identity be verifiable among those people.

Even in the developed world, identity is deeply flawed.  Why would I need to show a driver’s license with address and driving record just to prove that I am old enough to buy a beer, or receive a senior’s discount at the movie theater?  Why can’t a person simply prove age, or prove driving ability, or prove residence, or identify any facet of trade without also revealing every other facet?  It is often such matters of identifications that can best secure privacy.

This brings to question who would maintain, manage, and / or control identifications.  Would it be a fully decentralized system or would it be a permissioned database system?  Would the identity institution be a bank or a private corporation, or a government or a decentralized organization?

Finally, what is the core objective of an identity system?  Will it project the ability to access something? Would it quantify and qualify the potential to produce something?  Does identity pertain equally to the object of commerce and the objective of commerce?   To what degree does the security of identity impact the durability of ownership?

Blockchain technology and those who seek to apply it are all encountering the identity issue.  From Banks trying to comply with KYC/AML to engineering societies trying to identify the right knowledge assets to solve a particular problem, the question of identity management is a paramount consideration.  These are exciting times because the subject is so new.  Please sit back and enjoy this rare opportunity for such a diverse panel of experts to drill into an important subject that impacts us all.

 

 

Zertify Zillow Zestimates On Blockchain

zertify zillow zestimate on blockchain Big Problem with Zillow Zestimates:

Perhaps the best example of metadata being imposed upon an unwary public is the “Zillow Zestimate”.  Zillow.com is a real estate website that aggregates public information and boldly publishes the value of your personal property while quietly disclaiming that invalidity of their own valuation.  In all fairness, RedFin.com and Trulia.com also provide similarly structured valuations of your most valuable asset with no physical verification. The slightest misrepresentation could cost the homeowner tens of thousands of dollars for which there is absolutely no recourse.

According to Homevisor.com: if your house (or a house you are looking to buy) has a Zestimate of $300,000 – there is almost a 25% chance that the house will sell for less than $240,000 or more than $360,000. That is a pretty wide margin of error. 

There must be a way to Zertify Zilliow Zestimates on blockchain

Implications:

The result is that responsible homeowners who have conscientiously maintained and improved their property at great expense of time and money may be punished in a market while those who neglected their properties may be overly rewarded.  Neither the buyer nor the seller has any way of inspecting comparable homes used by Zillow.  This causes market distortion that affects the buyer, the seller, and the community at large.

Root Cause:

Zillow, Trulia, and RedFin all scan from public data sources.  The problem is that there is no trusted public ledger where owners can register valuable improvements and amenities that may dramatically impact the value – and which lower the risk of owning a particular property.  If such a trusted ledger did exist, it is certain that data scrapers such as Zillow, Trulia, and RedFin would be happy to scrape the data at no marginal cost.

Solution:

An organization such as the National Society of Professional Engineers has sufficient authority to provide a blockchain based ledger where a licensed professional engineer could physically review major components of a property including structural, plumbing, electrical, envelope, energy efficiency, HVAC, Solar Installations, mold, corrosion, critical slope, tree liabilities, view amenities, etc., and formulate an annual cost of ownership statement (ACOS) over a standard period of time.  The licensed engineer will register the ACOS, along with recent remodeling permits filed with the city, on the NSPE blockchain where it may be accessed by Zillow, Redfin, Trulia, MLS, banks, insurance, and the public, etc.

Value Proposition:

The ACOS and the Professional Engineering condition assessment could be provided to owners for a flat fee or subscription fee with a ROI greater than 10:1. This means that viability threshold for engineering assessment is defined as adding more than 10,000 dollars to the average sales price of the property for every 1000 dollars that the homeowner spends on the engineering report.  Owners that don’t meet this minimum threshold would not benefit from an ACOS and could not be listed on the NSPE Registry.

Size of market:

Assuming that there are about 100 million private homes in the US.  The percentage of under-valued homes that would benefit from a 10:1 PE registry are characterized at over +1 standard deviation on a bell curve distribution and higher.  This is roughly equivalent to 14% of 100 million, or approximately 14 million properties.  If each of those spends a minimum of  $1000 dollars for assessments, the value of the market would exceed $1.4B dollars. According to Homevisor.com estimates, the market would bear an engineering cost of $6000 yielding a $60,000 ROI, or roughly a $10B dollar market.

Conclusion:

Such a blockchain would safeguard the health and welfare of people and property while increasing  the visibility of professional engineers as a public financial institution with real financial impact.  The NSPE data would reduce volatility in banking and insurance ledgers so that pricing becomes more efficient. Real Estate professionals, renovation contractors, and real estate appraisers would also benefit from the registry by delivering the right product to the right client at the right time. It will increase the demand for a retail professional engineering sector to defend the technical best interest of society.  It will signal high integrity rather than low integrity to the preventive maintenance market.  Most importantly, the homeowners who maintain their property and those who will buy those properties benefit from fair market assessment of property values at a far greater utility than the typical point-of-sale home inspection.

Notes:

  • The ideas presented here are the sole creation of the author and not meant to reflect the intentions or interests of the National Society of Professional Engineers, Zillow, or any other referenced entity. 
  • Zertify takes its name from a portmanteau between the word certify and the statistical z-test https://en.wikipedia.org/wiki/Z-test

Municipal Governance On The Blockchain

treesviewAs a member of the City of Edmonds Planning Board, I hear a lot about what the public wants and what they do not want from their local government.  As a seaside town, property values can be greatly impacted by water and mountain views.  As such, there is an incentive to remove trees blocking views.  In other parts of town, the urban forest is extremely beautiful and there is great incentive to preserve trees from high density developers. So what happens when a town wants to regulate trees?  In our case, it was NOT an Edmonds kind of day. Perhaps it’s time to try municipal governance on the blockchain. 

Problem:

Many municipalities are adopting laws which may restrict the cutting of trees on private property in response to factors such as canopy loss, erosion control, wildlife protection, urban forest management, development, view amenities, climate change, etc.; or to enhance tree cutting to make way for new development and associated tax dollars. However, most models for tree regulation are unpopular with their imposing fines, permit fees, high density development, and government regulation on private property. Yet, these fines and permit fees are required to fund a bloated top-heavy tree code in the first place!!

Proposal:

Incorporate cryptographic and/or block chain technology to create a web-based public ledger and tree inventory that everyone can see and anyone can audit. By adding simple gamification features, the tree code may become self-regulating as players interact with the game. This may minimize government involvement, except in the most exceptional circumstances.

Discussion:

Think of it like a huge public accounting ledger that everyone can see, but can only edit their own data.  Instead of accounting for money, the ledger accounts for trees.  The game starts when a property owner registers his or her own trees on the ledger.  The city will issue cryptocurrency based on the number of tree units the property owner claims. These tokens would go into an electronic wallet on a blockchain associated with the property parcel number.  Each year, the resident will be issued more tokens by the city as their trees grow – the value of the tokens is derived from climate data or LIDAR surveys.  Some years may increase token values, some years may decrease token value based on estimated growth rates.

When a person wants to cut down a tree, they need to spend tokens to do so. Ideally, A property owner would not cut down more than they can grow. If they don’t have enough tokens, then they need to buy them from adjoining neighbors who are also trying to grow more than they must lose. If trading is restricted to adjoining properties (not commoditized like carbon credits), then community actions must be agreed upon by neighbors to settle any difficult situations.

The city would rarely get involved except to peg the value of the tokens on climate data. Algorithms programmed into the public ledger would manage the token values and electronic wallet exchanges automatically.

Shifts incentives

This sounds innocent enough.  But in reality, it changes all of the incentives that we are now attempting to manage with convoluted linear rules and imposing government regulations on private property.

For example,

  • It rewards tree preservation.
  • It rewards early and active registration,
  • It is self-enforcing because neighbors have a vested interest, and the ledger is public.
  • It is self-governing because neighbors need to agree on price.
  • It is self-limiting – an area cannot get rapidly stripped without progressive costs.
  • If a developer tries to take out a lot of trees, the neighbors can make it very expensive to do so – or negotiate concessions, etc.
  • If an arborist is needed, then the business case exists to hire one.
  • The municipality is able to referee disputes and establish coin allocations based on canopy quota or weather conditions, etc.
  • It provides tree liability (or asset) disclosure at property sale.

Business case

Today, proposed tree code regulations expose the citizens to cutting fees as high as $1000 dollars per tree. Violations for unauthorized cutting can approach $3000 dollars per tree. This money is required to fund a tree department that may consist of up to 3 arborists (for a small seaside town in Washington state; pop. 50,000), a permit reviewer, an enforcement arm, and possible court challenges. It could cost a million dollars per year to have an effective tree code for a city under 100,000 people, or 10 dollars per person per year just to regulate.

A price point of 1 dollar per citizen per year would therefore not be an extraordinary amount of money for a city to resolve a difficult social problem with modern technology.   Several thousand small cities dot the American coastline making this a strong candidate for private entrepreneurial partnership simply to maintain and audit the public ledger.

Conclusion:

A new generation of web applications and cryptographic technologies would allow this activity to happen autonomously. No new labor is required. No regulators are needed, no special penalties or enforcement mechanisms are required.  The city can stay out of the private property tree business completely.

Technically, this is called a multi-agent algorithmic game on a decentralized autonomous platform.  The difference is that today, these things can be made to look and feel like a game that is fun to play – people may play it. How many other Municipal Governance functions can be self-governed on a blockchain such as motor vehicles, animal control, gun control, schools, parking, water rights, energy, executive power, or any intrinsically valuable shared community asset.

 

Gun Control On The Blockchain

The following discussion related to Gun Control On The Blockchain is a thought-exercise only inspired by new and emerging technologies for decentralized self-governance and does not necessarily represent the opinion of the author. It is not intended to favor any single political position. it is not presented as a comprehensive solution to all scenarios. This article is intended to invite readers to imagine new approaches and constructs to resolve complex governance issues using blockchain technology on public ledgers.  

Gun Control On The BlockchainProblem: According to some sources, 280,000 Americans have died from guns in the last decade.  Even opponents of gun control acknowledge that there is a need to assure that a gun owner is qualified to operate each specific type of firearm that they possess. Even proponents of gun control acknowledge that registering a gun with a central authority (government, insurance, gun schools) constitutes a loss of civil liberty. Everyone knows that “blanket legislation” accomplishes little more than punishing a large number of responsible people in order to deter a relatively small number of irresponsible people.

Proposal: A person who seeks to acquire a gun may create an anonymous Curiosumé persona that includes their training, qualifications, mental health record, police record, and personal references from other qualified gun owners, etc. This anonymous information can then be encrypted and time stamped on a blockchain. Any changes in these conditions must be added to the persona by one-way edit.  The identity of the persona remains on a private key held by the owner.

Gun dealers would be able to sell the level of armament commensurate with the threshold of competence evident by a quasi-anonymous persona. In the event of a disputed gun discharge, the actual identity of the person and their gun becomes known, therefore, their private key can be revealed without loss of civil liberty.  If the gun owner’s persona is accurate, then they will be protected under the 2nd amendment and receive an isolated incident judgment.  If the person lied on their persona, they forfeit some protected under the 2nd amendment and receive broad penalty and liabilities.

Alternate: Gun Owner Insurance:

Without revealing identity, the gun owner’s Curiosumé persona may act as a proxy identity for the person. The proxy would then be assigned to a risk sharing cooperative pool based on similar Curiosumé personas of the other people in the pool. The gun owner would pay insurance premiums commensurate with their persona – i.e., corresponding to the correct risk pool of their persona. In the event of a claim, the identity is unencrypted and revealed. If the person cheated on their premiums, they would not be covered. If they were truthful, they would be covered for accidental discharge.

Discussion:

Disciplined and experienced owners will pay a trivial amount for gun insurance while beginners would pay substantially more. This is an incentive to become educated in the rules of firearm ownership. If an individual has demonstrated severe shortcoming of responsibility, judgment, or prior convictions, then they will be pooled with others possessing the similar characteristics. As such, their insurance would be exponentially more expensive, perhaps prohibitive. Therefore, they would need to pay more to own a gun and or complete a rehabilitation program.  The market will reach a new equilibrium of relative safety.

This type of arrangement applying a Curiosumé layer to a blockchain effectively preserves the identity of the gun owner while also providing essential data to a public ledger that may be assessed by gun dealers, gun trainers, insurance companies, mental health professionals, personal references, legislators, and the public at large.

Again, in the event of a shooting, the gun owner and their gun are discovered anyway, therefore privacy no longer exists. Only at that time may the public ledger be reviewed.  There is a negative incentive for all people in the chain of possession in a community to allow an unstable person to possess a gun.

In the event of a worst case scenario intended by our founding fathers requiring for a protection by a trained citizen militia, then the blockchain can be shut down until such civil order is restored.

The Curiosumé layer on a blockchain satisfies the 2nd amendment on all points while protecting the public by filtering incompetent owners without punishing competent owners through fair market forces.

***

 

Introducing Intrinsic Coin

From Wiktionary: INTRINSIC

Untitled

Nothing economic can happen until two or more people get together and build something useful.  In a global human network that is facing global constraints, the core function of the economy must be to find each other.  This is made extremely difficult by the existing “factors of production” that now classify and allocate your productivity and mine.  The true intrinsic value of money resides in the social, creative, and intellectual capacity of people who design, maintain, and support those factors of production.

Early cryptocurrencies solve only part of this problem by providing a indelible ledger and medium of exchange. But true money must store (represent) human productivity, otherwise people would not be willing to be productive in exchange for it. To reconcile these shortcomings, The Ingenesist Project (TIP) is building a new class of cryptocurrency with the defining characteristic of storing and exchanging social, creative, and intellectual value intrinsically, i.e., within the currency itself.

By integrating a Curiosumé layer with an efficient and robust blockchain backbone, people can exchange a currency that represents the intrinsic value of their own productivity in collaboration with that from their community.  Curiosumé converts the résumé into cryptography that allows people to control their own identity as “smart keys” where they can interact with each other using “smart contracts” on a “smart blockchain” such as Bitshares and others.

It is well known that the value of a nation’s currency is backed by the productivity of its citizens. The same is true for states, communities, and even individual persons. Money must have intrinsic value. There really is no way around this except by developing an Intrinsic Coin with these specific characteristics.  This already works on a small scale with community currencies and in co-ops. The challenge now is to scale broadly it to a point of voluntary generalized reciprocity.

Introducing Intrinsic Coin solves this problem by decentralizing productivity of a community prior to the exchange, not after.  This allows people to take control of their identities and the market place for their social, creative, and intellectual capital. From decentralizing so-called ‘human resources’, to putting a tollbooth on big data, to hedging debt instruments, the implications of an Intrinsic Coin are sweeping and vast.

There is no shortage of work that needs to be done, but there is increasingly scarce money to pay for it. There are abundant social, creative, and intellectual assets in people that are not articulated in any traditional accounting system.  If we can create that accounting system, we’ll be able to tap into a ground swell of hugely productive makers who are misallocated in their jobs and careers by the silos they are placed in … or excluded from.

People need a new form of money that they can trade among their selves which helps them find each other and represent their true unadulterated productivity. They need a decentralized ledger and a local exchange. This is where the promise of blockchain technology started. This is where Intrinsic Coin will serve.

The Ingenesist Project Team is comprised of multi-disciplinary experts in Engineering, Insurance, Banking, Philanthropy, and Blockchain Development. Interested partners and financial technology media are encouraged to contact the Ingenesist Project at http://www.ingenesist.com

References: Curiosumé – Reorganizing In the Era of Social Capitalism

 

Occupy BitCoin

occupy BTC picOccupy Wall Street had the effect of “measuring into existence” the 99% of people who subsidize the economic liberty of the top 1%. Now, with the BitCoin Protocol, the financial information gap between the 99% and the 1% is about to disappear. This is a fleeting moment in history and an opportunity that we must take for all it’s worth.

BitCoin, used as a currency, is a sideshow in comparison to the possibilities in the Block Chain Protocol (BCP) for frictionless transfer of ALL forms of value.  The best description that I’ve heard is that BitCoin is a “protocol for the synchronization of information”.   This feature alone – not the digital currency itself – is what will eventually doom brokers to a life of actually producing something of value for society.

The Block Chain Protocol can eliminate trillions of dollars in unnecessary friction from ANY transfer of value – not just money. But most importantly, the BCP provides a way to “measure into existence” human value attributes such as knowledge, innovation, and wisdom in a digital format and public repository.  Speculators are clearly not counting on 7 billion virtual currencies representing each individual contributor in an economy.  

People are Corporations

A well know politician once said “Corporations are people, my friend”. What he failed to realize, is that people could also be corporations.  The BCP allows everyone to equally access the right to become their own economic entity responding to real supply and demand for useful goods and services; raising money in a public stock market; holding individual IPOs; combining knowledge assets with others of their choosing; affixing contracts; time stamping tranactions; and issuing “BitShares” against future productivity as currency – all without any financial friction or corporate barriers whatsoever.   

The post-Dollar economy

Anyone with basic understanding of high-school mathematics can demonstrate how 50 Trillion Dollars in global debt, at compounding interest, can never be paid back.  This is an economic reality.  The question becomes, what kind of world do we want after the expiration of fiat currencies?  Will BitCoin, as a storage of value, amount to a convenient placeholder while the old financial system reboots anew in digital form, or is there a greater opportunity for humanity in mining BitShares?

When a currency enters hyperinflation, the results are characterized by the rapid and chaotic transfer of government (public) property to private holders – or vice versa. However, things could be very different with a third option that could actually advance civilization to a higher order.

In its nascent state, we describe this third option with terms like; The Commons, Open Source, Crowd Source, Crowd Fund, Social Capital, P2P, etc.  There are hundreds of thousands of start-ups and co-operatives (formal and informal) separately aiming down this path.  They need tools that help them integrate so that the output of one application becomes the input of the next application. The longer that they can operate outside of the fiat system (without reconversion to dollars), the greater they will fortify the next economic paradigm against unsecured currencies.

The End Game

Politicians have demonstrated their willingness and ability to bring the economy, and everyone’s associated assets, to the brink of collapse. This game survives only because the extractive 1% cannot build walls high enough to protect them against a complete financial meltdown. They still need food, clean water, electricity, medical care, education, civil services, transportation, and renewable energy … all the stuff produced by the 99%!

Suppose that the world were given the choice between a BitCoin, backed by nothing, and a BitShare backed by community productivity of all useful things?  The choice would be obvious thus creating the mother of all hedge funds resulting in the decentralization of value and power to the “The Commons” regulated by the open source technology of the Block Chain Protocol.    

Call to Action

We have a great opportunity ahead of us and only a few years to accomplish it before the BCP is compromised by decentralize money without also decentralizing all factors of production.  We simply can’t afford to let this go unanswered.   

We need to build the interfaces, the structures, application, and governance that will allow human “Intangibles” to become digital “tangibles”.  Only this will enable human flourishing over human extinguishing.  We need to turn our collective intelligence and computational horsepower to the epic task of mining BitShares, not necessarily BitCoins.

References:

How The Bitcoin Protocol Actually Works

Bitcoin Wiki – Contracts

True Value of Bitcoin – Stefan Molyneux

 

Powered by WordPress & Theme by Anders Norén

css.php