The Next Economic Paradigm

Tag: insurtech

Making Money

The Ingenesist Project: Making Money

Nobel Economist Robert Solow calculated that 80% of economic growth is the result of advances in technology. This Makes sense. Technology makes us more productive.

However, GDP measures the products, not the producers. Engineers, Scientists, and Technologists are responsible for ideation, design, and implementation of new and improved technology.

Unfortunately, Engineers, Scientists and Technologists are classified as “intangibles” Intangibles are, in turn, classified as expenses to be minimized, not investment to be maximized.

Here’s the good news… 80% of the true global economy is simply hidden from view. Trillions upon trillions of dollars are sitting on the table waiting to be measured into existence. Can you see it?

The Ingenesist Project uses game theory, blockchain, and Artificial Intelligence to convert Intangible Assets into a tangible form.

Join The Ingenesist Project

Analysis

The purpose of this video is to synthesize the simplest interpretation of value and test that against prevailing economic principals. Engineers, scientists and technologists are treated as EXPENSES, let that sink in. If they are not assets, then they are LIABILITIES… full stop. This is a clear, present and vastly consequential flaw that must be addressed by someone somewhere.

Otherwise, if there is no institution willing or able to defend this flawed economic principal, then it is super-vulnerable to disruption. We need to maximize innovation, not minimize innovation. There needs to be a wholistic and systemic approach to solving problems in the world. We must head off global systemic risks. As clever and experienced as the VC community is, they cannot be expected to pick and choose winners and losers in the next economic paradigm.

There is far more ‘money to be made’ by shifting engineers, scientists, and technologists to the ASSET column of the global balance sheet.

Share this:

An Invisible Economy

An Invisible Economy: The Ingenesist Project

A firefighter is worth millions of dollars per hour preserving lives and property…  but only when there is a fire. A Fire Protection Engineer can design thousands of buildings that will never burn.

In the absence of a fire, the true value of the Scientists, Engineers, and Technologists is invisible. But the value of their economic contribution continues to persist.

What if we could measure the true value of intangible assets into present value existence. A massive new asset class would be unlocked.

The Ingenesist Project uses Game Theory, Blockchain, and Artificial Intelligence to convert intangible assets into tangible form, at scale. There is no shortage of money, only a shortage of imagination.

Join The Ingenesist Project

Analysis

The purpose of this video is to demonstrate how engineers, scientists, and technologists remove RISK from complex systems. Risk is directly correlated to “return” and, therefore, profits.

So what happens to all of that value that a single diligent engineer creates when they remove all of the risk? Is it paid to the engineer? no. Is it returned to the non-victims of the calamity averted? no. Is captured by the the banking system as some form of arbitrage? Yes, absolutely, yes.

This is the deep dark secrets of finance. Don’t let the engineers, scientists, and technologists know that they are paid 2-20% of what they are worth. They may want free stuff like healthcare, job security, or royalties, or else they’ll go build something else that pays better social dividends. Can’t have that.

Obviously the question becomes, what happens when there are no more engineers to eliminate risk? There is a tipping point and we are dangerously close to approaching it. These things are easy to measure, assess, and resolve but there needs to be an institution able to secure material facts and assert the economics of those facts.

Share this:

A Tiny Flaw

A Tiny Flaw. The Ingenesist Project

What if there was a tiny and nearly imperceptible flaw in Market Capitalism that could be easily corrected? To do so would solve many of society’s most pressing needs without disrupting the institutions upon which we depend.

Technological change must always precede economic growth. We are going about the business of civilization as if economic growth must always precede technological change. It’s like driving a car while looking through a mirror. In other words, money is not the cause of innovation. Money is the result of innovation. The implications of this tiny flaw impacts everything from Climate Change and Social Equity to Venture Capital and Global Debt. 

It started with classical economic theory. In the 1700’s economic inputs such as Land, Labor, and Capital were easy to measure. The products that resulted from these inputs were also easy to measure. However, in the 1700’s; social, creative, and intellectual inputs by humans were not so easy to measure. Accountants call them intangibles, but they are simply “invisibles”. 

Today, this is an easier problem to solve.  Ironically, technological Change has brought us new ways to measure intangible assets. All we need to do is convert them to a tangible form.  The resulting economic growth will far exceed global debt because there is no such thing as “not enough money to innovate”.  Together we can correct A Tiny Flaw   

Join the Ingenesist Project.

Analysis

This is largely the initial video in the series and the first that we published. Attention should be drawn to the idea that maybe there is a tiny flaw that can be easily corrected. Instead of trying to solve every single problem that is strangling civilization as we know it, we could solve one single problem and the other problems will solve themselves.

The question becomes: are we too vested in our misery to even consider such a possibility? Are we so narcissistic to believe that our particular problem is the one that must be solved even if it worsens someone else’s problem? Are we all expecting the “other guy” to change and that will make your world work? Good luck with that.

The flaw is no tiny, so hidden, yet so obvious that it defies the imagination. All we need to do is measure ourselves differently. Who is stopping us from doing this? nobody. What law says we can’t do this? There is none. And if we do correct the flaw, who suffers? No one.

Will we do it?

Share this:

A Knowledge Inventory System

A Knowledge Inventory System; The Ingenesist Project

Have you ever wondered why the credits at the end of a movie are printed so small and scroll by so fast? The credits are not there for your benefit. The credits exist for the benefit of the movie industry.

Film production is a highly intellectual, creative, and social enterprise. In other words, Hollywood is denominated by knowledge assets.   The rolling credits serve as a knowledge asset inventory system for all things needed to make the next movie.

Everything revolves around being on the credits or being known by people on the credits. This is how people find each other.  The rolling credits make this possible. Not unlike a blockchain, in order to cheat the system, one must alter every instance of the celluloid reel or digital file.

Engineering, science and technology are also social, creative, and intellectual industries fueled by knowledge assets. Not unlike a blockchain, engineering processes are irreversible and immutable.

When we look at a sturdy bridge, or magnificent structure, or a brilliant piece of software, there is no easy way to find the people who are responsible for a specific element of that work. The Ingenesist Project uses game theory, blockchain, and Artificial Intelligence to create a knowledge asset inventory so that Engineers, Scientists, and Technologists can find each other.

Join The Ingenesist Project

Analysis

Engineering and science have long been compared to the Arts as a creative profession. The point of this video is to demonstrate how other creative professions deal with the intangibles gap. While the Hollywood system has its own set of pros and cons, the comparison is worthwhile. Notably, the arts often compensate creators with “royalties” while engineering, science, and technology most often pay hourly wages.

In addition, there are comparably fewer barriers, silos, or human resource management hurdles to navigate for artists. They don’t attempt to reduce a 4-dimensional performance down to a 2-dimensional CV/resumé. Instead, they can submit the 4D performance as their resumé. A great deal of efficiency is retained.

Share this:

An Algorithm For Innovation

An Algorithm For Innovation; The Ingenesist Project

A useful definition allows people to identify, replicate, or measure the subject being defined.  Yet the best definition we have for Innovation is basically, “You know it when you see it”.

How can we sustain our world if we cannot even define the sole instrument of change? 

Have you ever had an epiphany? That ah-ha moment that comes from deep within… …when suddenly your knowledge about something grows exponentially within a very short period of time? Let’s call that “innovation”, where one large innovation is comprised of many smaller innovations.

In order to measure innovation, all you need to do is measure the rate of change of knowledge with respect to time. You don’t need Calculus to recognize this as an algorithm for innovation … but it helps. 

If that idea doesn’t change the world, nothing will.

Join The Ingenesist Project

Analysis

Innovation is a great mystery that does not need to be. Everyone innovates – it is necessary for survival. Yet the magic and mystique of the innovator is a cultural phenomenon that forms the foundation of tech social status. Innovation is denominated in money – if you are not flush with cash, then you are not an innovator. Only VC can be innovators due to their ability to navigate financial markets. It almost seems that the more difficult it is to identify something, greater scarcity can be assigned to it. With greater scarcity come greater value. Again, when we become vested in our own misery, progress grinds to a halt.

This is all quite counter productive.

The problems of the future will require innovation, creation, new ideas, and vast execution at an astonishing scale. In order to achieve true economic sustainability, we need to a metric to denominate true value, not propped up scarcity value.

It is relatively easy to create and measure where high rates of change are occurring in a community or society. It is then relatively easy to observe what innovations take place as a result. This isn’t exactly a unicorn farm, but you probably can’t have a unicorn without these conditions in the first place. It is then only a matter of memorializing these conditions in a tangible form.

Share this:

Dividends of Innovation

The Dividends of Innovation

Innovation is not linear  Modern civilization did not begin 10,000 years ago with 250 Trillion dollars sitting in a box somewhere in the desert.

Money was measured into existence as a function of the things that scientists, engineers, and technologists built. Innovations such as the wheel, wedge, and lever came long before the invention of International Trade Agreements Innovations in machinery, transportation and energy enabled advances in sanitation, healthcare, and computers

Yet, the wheel, wedge, and lever are more important and more widely applied than ever. Wouldn’t it make more sense if we developed a monetary system backed by the dividends of innovation rather than the gravity of debt?

The Ingenesist Project uses game theory, blockchain, and artificial intelligence to measure the true economic contribution of engineers, scientists, and technologists.

Join The Ingenesist Project

Analysis

Share this:

How It Works

How It Works; The Ingenesist Project

The Ingenesist Project Uses Game Theory, Blockchain, and Artificial Intelligence to convert intangible assets to a more tangible form.

Part One: Observe The game is based on a system of claims and validations among a population of players. 

Part Two: Measure Blockchain acts like a giant datalogger that captures time-value data of game transactions.

Part 3: Predict The Percentile Search Engine predicts the likelihood  various combinations of players would produce novel outcomes. 

These three applications acting together create a virtuous circle that converts intangible assets into a more tangible form. Join The Ingenesist Project

Analysis

In almost every video, we make the statement that The Ingenesist Project uses game theory, blockchain, and AI to make intangible assets more tangible. This sounds pretty complicated, so how do you explain it in under a minute? The audience deserves to know how we intend to deliver on the promises that we are making.

The answer to this, and almost every engineering or scientific problem, boils down to making observations, measuring outcomes, and predicting future results. The same should be true here.

We’ve also stated that engineers remove risk from complex systems. Risk assessment follows a similar sequence; first you need to identify the risk exposure, then you need predict the likelihood it will manifest, then you need to measure the consequences of the event.

The game sets things into motion, the blockchain records the motion, and the AI reads the recorded motion and predicts the next point on the curve.

So what may seem like a very complicated and jargon laden geek storm is actually an extremely simply set of tasks that almost everyone already practices in the professional lives. Why reinvent the wheel?

Share this:

Network Effects

Network Effects: The Ingenesist Project

To borrow from a famous quote:  “Uber, owns no vehicles… Google and Facebook create no content… Alibaba holds no inventory… Airbnb owns no real estate….” But they have a combined value of almost 3 Trillion dollars. This is very interesting.

Whereas most companies are priced according to strict financial performance, Network platforms provide a virtual bridge that connects people to each other. They are priced proportional to the square of the number of human connections they serve.

This is known as Metcalfe’s Law of Network Value. If network platforms create a virtual bridge connecting people, why can’t we value real bridges using Metcalfe’s law?  Why can’t we value roads, airports, buildings and all manner of engineering, scientific, and technological infrastructure as proportional to the connections they serve? 

The Ingenesist project uses game theory, blockchain, and artificial Intelligence to convert intangible assets into a more tangible form. Join The Ingenesist Project

Analysis

We often say that Engineers, Scientists, and technologists need only to measure themselves differently in order to become “more tangible”. Most people’s eyes glaze over as if we’re living in some fantasy world. This video demonstrates that principal exactly as it happens with network platforms that are popping up everywhere around us. Really, we’re not making this up.

Metcalfe’s law arose from the telecommunications industry to measure the utility of telephone connections. The value of the network grows exponentially with the number of points in contact. Let’s start by saying that telephone networks themselves are a creation of engineering and scientific professions.

The engineering value of a bridge is equal to it’s replacement cost – so that’s what they pay engineers to create one. However, the economic value of the bridge includes every transaction, truck delivery, soccer game, doctor appointment, and math class that resulted from the ability for 10,000 people per day to cross the river.

Facebook, Google, Alibaba, AirBnB, et al, could not exist if they were valued according to their replacement cost. Imagine what amazing works of engineering, science, and innovation are non-existant today only because it is valued incorrectly.

Share this:

Risk And Return

Risk and Return

As the saying goes, money makes the World go around. This may not be entirely true.

Where risk is high, the cost of money is high. Where risk is low, the cost of money is low. Engineers, scientists, and technologists specialize in removing risk from complex systems.  So, why is there never enough money to mitigate the world’s most pressing risks?

Fortunately, all we need to do is reorganize engineers, scientists, and technologists and the money will surely follow

The Ingenesist Project uses game theory, blockchain technology, and Artificial Intelligence to reorganize the engineering and scientific professions. 

Join The Ingenesist Project

Analysis

This video poses a legitimate question. If there is money to be made by mitigating risk, why are Engineers, Scientists, and technologists classified as expenses (liabilities), and not assets on global balance sheets?

It’s amazing how vested we are in this staggering little flaw in market Capitalism.

Key Phrase: Risk and Return

Share this:

The Innovation Standard

The Innovation Standard: The Ingenesist Project

Solving the problems of the future will require humans to innovate at an astonishing rate… … far greater than anything our existing economic system can support. In order to achieve this, there must be a fundamental shift in how knowledge assets are measured, curated, and exchanged.

Today, a traditional bank distributes money backed by your promise of FUTURE productivity. Innovation is also a promise backed by FUTURE productivity. Two currencies backed by the same underlying asset are readily convertible.

In the future, an Innovation Bank, would issue currency backed directly by the true value of innovation. All we need to do is measure ourselves differently. 

The Ingenesist Project uses game theory, blockchain, and Artificial Intelligence to convert intangible assets into a more tangible form.

Join The Ingenesist Project

Analysis

The Innovation Standard is a reference to the Gold Standard or the Debt Standard, or the Oil Standard, etc. Whatever the standard, it needs to represent human productivity or else nobody would work in exchange for it (think about that for a sec).

The problems that face the world are global and they are systemic. That means that free markets technically don’t exist and the next thing that needs to be produced is the thing that society needs. Sure everyone wants a new Lambo, but it’s not very useful if the roads are too rough to drive it. Sure.Bitcoin is awesome but it’s contingent on a reliable energy grid. Sure, I love AI and much as the next geek but who’s going to read my content if they lack education to act on it?

Money as we know it just does not move fast enough. It does not represent the true productivity of Moms and Dads, soccer coaches, engineers, Scientists, teachers, and event organizers. Money needs to be produced as thenet sum of productive human behaviors. People know what problem needs to be solved next and if you give them the tools to fix things, they will.

Share this:

The Law of Nurture

Competition is one way of arriving at the optimal solution to a problem. Some call it the “Law of Nature”, survival of the fittest – where the  final score can only be One to Zero. Unfortunately, in order to feed the winner, we must cultivate suitable losers.  Evolution is slow and inefficient as a business optimization tool.   

The laws of Nature provide infinitely more examples of collaboration than competition.  Even if one player does not win today, their capacity to innovate remains to continuously improve the game for everyone later … if we let them. 

The Ingenesist Project uses game theory, blockchain, and artificial intelligence to convert intangible assets into a more tangible form.   Join The Ingenesist Project

Analysis:

This video acknowledges the value of competition as a solution optimization tool. So competition is not being called into question. However, a different problem involves preserving the knowledge, innovation, and wisdom that was created in the act of competition so that they can be developed in future or tangential problem solving environments.

Economics is the science of incentives which invariably invokes the discipline of game theory. we do have complete control over how a game is played, how players are preserved (or destroyed) and how equity is distributed. As such, we have complete control over the sustainability of the game which is ultimately in the best interest of everyone.

The conclusion is that a game which maximizes the health and welfare of the players ultimately maximizes the value of the game.

Share this:

A Virtuous Circle

A Virtuous Circle:

A bank won’t lend money to a project that is not insured. An insurance company will not underwrite a project that is not properly engineered. Engineering projects need to be financed to cover the cost of design and construction.

This is the Virtuous Circle of economic development. If any part of this cycle is broken, incomplete or corrupted, economic development fails.  

Financial institutions simply issue paper receipts called “Money” to represent the actual things that engineers, scientists, and technologists create.

Money is, in fact, the intangible asset and engineering is the tangible asset! We’ve gotten it backwards.

When a virtuous circle reverses itself, it becomes a vicious circle. This is where we are today Fortunately, this is an easier problem to solve. The Ingenesist Project uses Game Theory, Blockchain, and Artificial Intelligence to reverse this vicious circle. 

Join The Ingenesist Project.

Analysis:

The purpose of this video is to introduce the big picture of how the Innovation Bank will integrate with existing financial networks to make the production cycle more efficient and more responsive to systemic risk.

The point of this video is to isolate the idea that our global economy is an interrelated system with 3 critical components that must be integrated and operating at peak efficiency in order for the economy to serve global citizens equitably.

The challenges of the future will require humans to innovate at an astonishing rate – far more rapidly than our current financial system can support. There is no way that Venture Capital – our current “best bet” – can respond to the speed, breadth, and depth of technological change.

The problem ahead is systemic risk. It is not possible for a collection of competing VC to pick the winners and the losers of the next economic paradigm. Unintentionally, the the VC system may cause more damage than good.

This idea is useful for when we introduce the game, blockchain, and AI components – the blockchain serves as a check valve that allows the virtuous circle to spin in only one direction. The game mechanics provide the energy to keep the virtuous circle spinning in the right direction, Augmented Intelligence will help identify what components of the system are operating optimally so that innovation can be applied correctly.

Share this:

Decentralization Of Engineering, Science, and Technology

Decentralization is the rallying cry of the Blockchain Movement.

Few people realize that the Science, Engineering, and Technology professions are already decentralized. Unlike Banking and Finance, there are no all-powerful incumbents that must be vanquished. And the laws of Nature already apply to everyone.

Instead, Scientists, Engineers, and Technologists are contained by innumerable silos that have little to do with the Natural Laws  We are segregated by jurisdiction, academia, ontology, corporations, politics, Trade Groups, Societies, international borders, and much more.

We represent 5% of the workforce but are responsible for 80% of economic growth. But collectively, we are weak, disorganized and powerless to prioritize the needs of our World. The only thing standing in our way, is ourselves. This is a much different problem than decentralization.

The Ingenesist Project uses Game Theory, Blockchain and Artificial Intelligence to remove the silos that divide us.

Analysis:

The single point of this video was to introduce the distinction that a centralized institution and a collection of compartmentalized institutions may have similar characteristics to the participants, but are not the same thing. The former is far more difficult to disrupt while the latter is entirely vulnerable to disruption. This represents a huge opportunity for those who can see the distinction.

This idea plays a central role in the execution of The Innovation Bank. Where many see a stone wall of resistance to change, there may actually exists a paper veneer.

Share this:

A Tale From The Crypto

Have you ever wondered why a soccer goal has a net? The purpose of the net is to provide a visual contrast so that 50,000 observers can immediately reach a consensus that something very important has happened. 

After that, a digital token is awarded to the team that scored a goal.  The digital token also secures valuable business intelligence like game strategy, player stats, league standings, revenue, and everything else.

However,  the consensus is by far the most important part.   With the consensus, a player can make a lot of money.  Without the consensus, they are invisible.  With the consensus, the community can invest in a new stadium. Without the consensus, we can only play at the school yard. With the consensus, the economy flourishes. Without the consensus, it fails. 

Lots of crypto projects have these same pieces. But mostly, they are mixed up.  The Ingenesist Project uses Game Theory, Blockchain, and Artificial Intelligence to secure community consensus.

Join The Ingenesist Project

Share this:

The Mechanics of Blockchains

rubrik-fridge The Mechaics of Blockchains

Blockchain technology is like a three-trick pony. It essentially combines three slightly clumsy computer tricks to mimic decisions that a human administrator routinely makes. The difference is that, if done correctly, the computer can perform some of these decisions with great speed, accuracy and scalability. The peril is that, if done incorrectly, the computer can propagate an incorrect outcome with the same stunning efficiency.

1: The Byzantine General’s Dilemma

A scenario first described in 1982 at SRI International models the first trick. This problem simulation refers to a hypothetical group of military generals, each commanding a portion of the Byzantine Army, who have encircled a city that they intend to conquer. They have determined that: 1. They all must attack together, or 2. They all must retreat together. Any other combination would result in annihilation.

The problem is complicated by two conditions: 1. There may be one or more traitors among the leadership, 2. The messengers carrying the votes about whether to attack or retreat are subject to being intercepted. So, for instance, a traitorous general could send a tie-breaking vote in favor of attack to those who support the attack, and a no vote to those who support a retreat, intentionally causing disunity and a rout.

See also: Can Blockchains Be Insured?  

A Byzantine Fault Tolerant system may be achieved with a simple test for unanimity. After the vote is called, each general then “votes on the vote,” verifying that their own vote was registered correctly. The second vote must be unanimous. Any other outcome would trigger a default order to retreat.

Modern examples of Byzantine Fault Tolerant Systems:

The analogy for networks is that computers are the generals and the instruction “packet” is the messenger. To secure the general is to secure the system. Similar strategies are commonplace in engineering applications from aircraft to robotics to any autonomous vehicle where computers vote, and then “vote on the vote.” The Boeing 777 and 787 use byzantine proof algorithms that convert environmental data to movements of, say, a flight control surface. Each is clearly insurable in a highly regulated industry of commercial aviation. So this is good news for blockchains.

2: Multi-Key Cryptography

While the Byzantine Fault Tolerant strategy is useful for securing the nodes in a network (the generals), multi-key cryptography is for securing the packets of information that they exchange. On a decentralized ledger, it is important that the people who are authorized to access information and the people who are authorized to send the information are secured. It is also important that the information cannot be tampered with in transit. Society now expends a great deal of energy in bureaucratic systems that perform these essential functions to prevent theft, fraud, spoofing and malicious attacks. Trick #2 allows this to be done with software.

Assume for a moment that a cryptographic key is like any typical key for opening locks. The computer can fabricate sets of keys that recognize each other. Each party to the transaction has a public key and a private key. The public key may be widely distributed because it is indiscernible by anyone without the related private key.

Suppose that Alice has a secret to share with Bob. She can put the secret in a little digital vault and seal it using her private key + Bob’s public key. She then sends the package to Bob over email. Bob can open the packet with his private key + Alice’s public key. This ensures that the sender and receiver are both authorized and that the package is secured during transit.

3: The Time Keeper

Einstein once said, the only reason for time is so that everything doesn’t happen at once. There are several ways to establish order in a set of data. The first is for everyone to synchronize their clocks relative to Greenwich, England, and embed each and every package with dates of creation, access records, revisions, dates of exchange, etc. Then we must try to manage these individual positions, revisions and copies moving through digital space and time.

The other way is to create a moving background (like in the old TV cartoons) and indelibly attach the contracts as the background passes by. To corrupt one package, you would need to hijack the whole train. The theory is that it would be prohibitively expensive, far in excess of the value of the single package, to do so.

Computer software of the blockchain performs the following routine to accomplish the effective equivalent process: Consider for a moment a long line of bank vaults. Inside each vault is the key or combination to the vault immediately to the right. There are only two rules: 1. Each key can only be used once, and 2. No two vaults can be open at the same time. Acting this out physically is a bit of a chore, but security is assured, and there is no way to go backwards to corrupt the earlier frames. The only question now is: Who is going to perform this chore for the benefit of everyone else, and why?

Finally, here is why the coin is valuable

There are several ways to push this train along. Bitcoin uses something called a proof-of-work algorithm. Rather than hiding the combinations inside each vault, a bunch of computers in a worldwide network all compete to guess the combination to the lock by solving a puzzle that is difficult to crack but easy to verify. It’s like solving a Rubik Cube; the task is hard to do, but everyone can easily see a solution – that is sufficient proof that work has been done and therefore the solved block is unique and valid, thereby establishing consensus.

Whoever solves the puzzle is awarded electronic tokens called bitcoin (with a lower case b). This is sort of like those little blue ticket that kids get at the arcade and can be exchanged for fun prizes on the way out. These bitcoins simply act as an incentive for people to run computers that solve puzzles that keep the train rolling.

Bitcoins (all crypto currencies) MUST have value, because, if they did not, their respective blockchain would stop cold.

A stalled blockchain would be the crypto-currency equivalent of bankruptcy. This may account for some amount of hype-fueled speculation surrounding the value of such digital tokens. Not surprisingly, the higher the price, the better the blockchain operates.

While all of this seems a bit confusing, keep in mind that we are describing the thought patterns of a computer, not necessarily a human.

The important thing is that we can analyze the mathematics. From an insurability standpoint, most of the essential ingredients needed to offer blockchain-related insurance products exist as follows.

1. The insurer can identify the risk exposures associated with generals, traitors, locks, vaults, trains and puzzles.

2. The insurer can calculate probability of failure by observing:

  • The degree of Byzantine fault tolerance.
  • The strength of the cryptography
  • The relative value of the coins (digital tokens)

3. The consequences of failure are readily foreseeable by traditional accounting where the physical nature of the value can be assessed, such as a legal contract.

We can therefore conclude that each of the tricks performed by this fine little pony are individually insurable. Therefore, the whole rodeo is also insurable if, and only if, full transparency is provided to all stakeholders and the contract has physical implications.

Markets are most efficient when everyone has equal access to information – the same is essential for blockchains. So much so that any effort to control decentralized networks may, in fact, render the whole blockchain uninsurable. It is fundamentally important that the insurer is vigilant toward the mechanics of the blockchain enterprise that they seek to insure, especially where attempting to apply blockchain to its own internal processes.

Adapted from: Insurance: The Highest and Best Use of Blockchain Technology, July 2016 National Center for Insurance Policy and Research/National Association of Insurance Commissioners Newsletter: http://www.naic.org/cipr_newsletter_archive/vol19_blockchain.pdf

Share this:

Powered by WordPress & Theme by Anders Norén

css.php